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Abstract

We investigate the problem of universal online learning with gradient-variation
regret. Universal online learning aims to achieve regret guarantees without the
prior knowledge of the curvature of the online functions. Moreover, we study the
problem-dependent gradient-variation regret as it plays a crucial role in bridging
stochastic and adversarial optimization as well as game theory. In this work, we
design a universal approach with the optimal gradient-variation regret simultane-
ously for strongly convex, exp-concave, and convex functions, thus addressing an
open problem highlighted by Yan et al. [2023]. Our approach is simple since it is
algorithmically efficient-to-implement with a two-layer online ensemble structure
and only 1 gradient query per round, and theoretically easy-to-analyze with a
novel and alternative analysis to the gradient-variation regret. Concretely, previous
works on gradient variations require controlling the algorithmic stability, which
is challenging and leads to sub-optimal regret and less efficient algorithm design.
Our analysis overcomes this issue by using a Bregman divergence negative term
from linearization and a useful smoothness property.

1 Introduction

Online convex optimization (OCO) models a sequential T -round game between an online learner
and the environments [Hazan, 2016, Orabona, 2019]. In each round t ∈ [T ], the learner selects a
decision xt from a convex compact set X ⊆ Rd. Simultaneously, the environments adversarially
choose a convex loss function ft : X 7→ R. Subsequently, the learner suffers a loss of ft(xt),
receives feedback on the function ft(·), and updates her decision to xt+1. In OCO, the learner aims
to optimize the game-theoretical performance measure known as regret [Cesa-Bianchi and Lugosi,
2006], which is formally defined as

REGT ≜
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1.1)

It represents the learner’s excess cumulative loss compared with the best fixed comparator in hindsight.

In OCO, function curvatures play an important role in the best attainable regret bounds. Traditional
studies examine three types of curvatures: convexity, exp-concavity, and strong convexity. Specifically,
for convex functions, online gradient descent (OGD) achieves O(

√
T ) regret [Zinkevich, 2003]; for

α-exp-concave functions, online Newton step assuming α is known obtains O( dα log T ) regret [Hazan
et al., 2007]; and for λ-strongly convex functions, OGD with known λ attains O( 1λ log T ) [Hazan
et al., 2007]. These results are shown to be minimax optimal [Ordentlich and Cover, 1998, Abernethy
et al., 2008]. Recent studies further strengthen them by introducing two levels of adaptivity.
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Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(·)-notation. Note that we only list universal guarantees
related to the gradient variation VT or the time horizon T . Each gradient-variation bound can directly apply a
corresponding small-loss regret in analysis, which is formally stated in Theorem 2 and omitted here for clarity.
We treat the log log T factor as a constant and omit it. “# Gradient” is the number of gradient queries in each
round, where “1” represents exactly one gradient query. And “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient # Base

van Erven and Koolen [2016] d log T d log T
√
T 1 log T

Wang et al. [2019] log T d log T
√
T 1 log T

Zhang et al. [2022a] log VT d log VT
√
T log T log T

Yan et al. [2023] log VT d log VT
√
VT log VT 1 (log T )2

Ours log VT d log VT
√
VT 1 log T

High-level Adaptivity to Unknown Curvatures. Traditional studies require function curvature
information in advance to select suitable algorithms for provable bounds. However, the information
could be hard to access in real-world applications. To this end, a line of research aims to design a
single universal algorithm that does not require the curvature information while achieving the same
regret guarantees as if knowing it, achieving the adaptivity to unknown curvatures. The pioneering
work of MetaGrad [van Erven and Koolen, 2016] proposed carefully designed surrogate functions and
achieved O( dα log T ) for α-exp-concave functions and O(

√
T ) for convex functions. Subsequently,

Wang et al. [2019] obtained the optimal O( 1λ log T ) regret for λ-strongly convex functions, while
maintaining the optimal rates in the other cases. Another remarkable progress of Zhang et al. [2022a]
proposed a flexible framework with simplified analyses and further enhanced the minimax results
using smoothness. We provide a detailed introduction of this work in Section 2.2.

Low-level Adaptivity to Gradient Variation. Although the regret guarantees based on the time
horizon T are optimal in the minimax sense, in this work we are interested in achieving the gradient-
variation regret [Chiang et al., 2012, Yang et al., 2014], which replaces the dependence of the time
horizon T by the gradient variation quantity defined in the following:

VT ≜
T∑
t=2

sup
x∈X

∥∇ft(x)−∇ft−1(x)∥2. (1.2)

Under smoothness assumptions, the minimax regret can be improved to O( 1λ log VT ), O( dα log VT ),
and O(

√
VT ) for λ-strongly convex, α-exp-concave, and convex functions, respectively. In this work,

continuing previous gradient-variation online learning results [Zhao et al., 2020, 2024, Zhang et al.,
2022b, Chen et al., 2023], we focus on the gradient-variation regret for the following reasons: (i)
gradient-variation bounds safeguard the minimax guarantees. Besides, as demonstrated by Zhao
et al. [2024], the gradient-variation regret is more fundamental than another well-known problem-
dependent quantity known as the small loss FT ≜ minx∈X

∑
t≤T ft(x) [Srebro et al., 2010, Orabona

et al., 2012] since gradient-variation regret can imply small-loss bounds directly in analysis; (ii) the
gradient variation plays a crucial role in bridging adversarial and stochastic optimization [Sachs
et al., 2022]; and (iii) the gradient-variation regret can be used to achieve fast rates in multi-player
games [Syrgkanis et al., 2015, Zhang et al., 2022b]. More detailed explanations of the importance of
achieving such adaptivity are provided at the end of this section.

Motivated by the aforementioned two levels of adaptivity, we focus on the problem of achieving
universal gradient-variation regret, i.e., designing a single universal approach with gradient-variation
regret across different curvature types without the prior knowledge of them. For this problem, Zhang
et al. [2022a] achieved partial results of O( 1λ log VT ), O( dα log VT ), O(

√
T ) for λ-strongly convex,

α-exp-concave, and convex functions, respectively. Subsequently, Yan et al. [2023] proposed a
carefully designed three-layer online ensemble approach to stabilize the algorithm and improved the
convex result to O(

√
VT log VT ), achieving the first universal gradient-variation guarantee. Although

optimal for strongly convex and exp-concave functions, their results still exhibit a gap with the
optimal O(

√
VT ) regret in the convex case. Here “optimal” refers to matching the best known results

with curvature information since problem-dependent lower bound cannot be easily obtained. The
only lower bound we are aware of is Ω(

√
VT ) for convex functions [Yang et al., 2014, Remark 5].
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To handle the uncertainty, online ensemble is commonly employed and proven effective in enhancing
the robustness [Zhou, 2012, Zhao, 2021], such as adaptive regret minimization [Hazan and Seshadhri,
2007, Daniely et al., 2015, Zhang et al., 2019], dynamic regret minimization [Zhang et al., 2018,
Zhao et al., 2020, 2024], and universal online learning [van Erven and Koolen, 2016, Zhang et al.,
2022a, Yan et al., 2023]. Concretely, an online ensemble algorithm contains multiple base learners
for exploring the environments and a meta learner for ensemble. In universal online learning, base
learners make guesses on the curvature information, and the meta learner tracks the best base learner
(i.e., with the most accurate guess) on the fly.

Due to the deployment of the online ensemble framework, computational efficiency has become a
point of concern, with two essential factors. The first is the number of base learners, because each
independently runs an online learning algorithm that involves time-consuming gradient computations
and projections. The second factor is the number of gradient queries, especially when the gradient
evaluation is costly, e.g., in nuclear norm optimization [Ji and Ye, 2009] and mini-batch optimiza-
tion [Li et al., 2014]. In universal online learning, an “efficient” algorithm is expected to adopt only
O(log T ) base learners, which is inherent to the online ensemble design, and only 1 gradient query
per round, matching the gradient query complexity of standard OGD. In terms of this metric, Zhang
et al. [2022a] employed O(log T ) base learners, but required O(log T ) gradient queries per round.
Yan et al. [2023] used only 1 gradient query per round but required O((log T )2) base learners (caused
by their three-layer algorithm design), resulting in reduced efficiency.

Results. Motivated by the above considerations of optimality and efficiency, in this work, we
propose a simple universal approach that achieves the optimal O( 1λ log VT ), O( dα log VT ), and
O(

√
VT ) regret simultaneously for λ-strongly convex, α-exp-concave, and convex functions, and

is efficient with one gradient query per round and O(log T ) base learners, resolving a major open
problem highlighted by Yan et al. [2023]. We summarize our theoretical results in Theorem 1, and
compare our results with existing ones in Table 1. Furthermore, we validate the effectiveness of our
approach by: (i) showing that our universal gradient-variation regret directly implies the optimal
universal small-loss regret in analysis without any algorithm modifications; and (ii) applying them to
the stochastically extended adversarial (SEA) model [Sachs et al., 2022], an intermediate framework
between stochastic and adversarial optimization. We achieve the same state-of-the-art guarantees as
Chen et al. [2024], but without curvature information. The details are provided in Section 4.

Techniques. Our technical contributions include two simple and novel analyses. First, the key to
gradient-variation regret is to analyze its empirical version, formally, ∥∇ft(xt)−∇ft−1(xt−1)∥22.
The previous approach to addressing this term involves controlling the algorithmic stability ∥xt −
xt−1∥22, which is highly challenging in universal online learning, leading to sub-optimal results and
less efficient algorithm design [Yan et al., 2023]. In this work, we overcome this issue via a novel
analysis by a useful smoothness property and a Bregman divergence negative term from linearization,
where the latter is inspired by the recent advance in stochastic optimization [Joulani et al., 2020].
Second, we adopt the surrogate functions proposed by Yan et al. [2023] to reduce the gradient query
complexity, and provide a novel analysis for the empirical gradient variation based on the surrogates.
A technical comparison with previous works is provided in Section 4.

Organization. The rest of the paper is structured as follows. Section 2 introduces preliminaries and
a general framework for universal online learning. Section 3 presents our efficient approach with the
optimal universal gradient-variation regret. Section 4 presents the implication and application of our
results. Finally Section 5 concludes the paper. All the proofs can be found in the appendices.

2 Preliminaries

In this section, we introduce some preliminary knowledge, including notations, assumptions, defini-
tions, and a general framework of universal online learning.

2.1 Notations, Assumptions, and Definitions

For simplicity, we use ∥ · ∥ for ∥ · ∥2 by default and use a ≲ b or a = O(b) if there exists a constant
C <∞ such that a/b ≤ C. In the following, we introduce the assumptions used in this work.

Assumption 1 (Boundedness). For any x,y ∈ X ⊆ Rd, the domain diameter satisfies ∥x−y∥ ≤ D,
and for t ∈ [T ], the gradient norm of the online functions is bounded as ∥∇ft(x)∥ ≤ G.
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Assumption 2 (Smoothness). For each t ∈ [T ], the online function ft(·) is L-smooth, i.e., ∥∇ft(x)−
∇ft(y)∥ ≤ L∥x− y∥ holds for any x,y ∈ Rd.

Both assumptions are common in the literature. Specifically, the boundedness assumption is widely
used in OCO [Hazan, 2016]. And the smoothness assumption is essential for first-order algorithms in
achieving the gradient-variation regret [Chiang et al., 2012]. Note that here Assumption 2 requires
smoothness on the whole Rd space and can be relaxed to a slightly larger domain than X , formally,
X+ ≜ {x+b |x ∈ X ,b ∈ G/L ·B}, where B ≜ {x | ∥x∥ ≤ 1} is a unit ball. We defer the details of
this relaxed smoothness requirement and its derivation to Appendix A. In the following, we provide
formal definitions of strong convexity and exp-concavity.

Definition 1. For any x,y ∈ X , a function f(·) is λ-strongly convex if f(x)− f(y) ≤ ⟨∇f(x),x−
y⟩ − λ

2 · ∥x−y∥2; f(·) is α-exp-concave if f(x)− f(y) ≤ ⟨∇f(x),x−y⟩ − α
2 · ⟨∇f(x),x−y⟩2.

Note that the formal definition of β-exp-concavity is that exp(−βf(·)) is concave. Under As-
sumption 1, β-exp-concavity implies Definition 1 with α = 1

2 ·min{1/(4GD), β} [Hazan, 2016,
Lemma 4.3]. Therefore, we adopt Definition 1 as an alternative definition of exp-concavity for clarity.

2.2 A General Framework for Universal Online Learning

In this part, we present a general framework of universal online learning [Zhang et al., 2022a, Yan
et al., 2023]. Formally, we study the problem where the learner lacks the prior knowledge of curvature
information, including (i) curvature type: convexity, exp-concavity, or strong convexity; and (ii)
curvature coefficient: exp-concavity α or strong convexity λ. Without loss of generality, we focus
on the case of α, λ ∈ [1/T, 1]. If α, λ < 1/T , even the optimal minimax results — O( dα log T ) for
exp-concave functions and O( 1λ log T ) for strongly convex functions [Hazan et al., 2007] – become
linear in T , rendering the regret bounds vacuous. On the other hand, if α, λ > 1, we can simply treat
them as α, λ = 1, only making the regret worsen by an ignorable constant factor. This simplification
is also adopted by Zhang et al. [2022a], Yan et al. [2023].

To handle the uncertainty of curvatures, an online ensemble structure is usually employed, with
multiple base learners exploring the environments and a meta learner tracking the best base learner.
More specifically, to deal with the unknown curvature coefficients α and λ, we discretize them into
the following candidate pool [Zhang et al., 2022a]:

H ≜ {1/T, 2/T, 4/T, . . . , 2n−1/T}, (2.1)

whose size is n = ⌈log2 T ⌉+ 1 = O(log T ). It can be proved that the discretized candidate pool H
can approximate the continuous value of α or λ with negligible constant errors. By doing this, it is
natural to design three distinct groups of base learners:

(i) strongly convex base learners: n in total, each of which implements the algorithm for
strongly convex functions with a guess λi ∈ H of the strong convexity coefficient λ;

(ii) exp-concave base learners: n in total, each of which implements the algorithm for exp-
concave functions with a guess αi ∈ H of the exp-concavity coefficient α;

(iii) convex base learner: only one, it runs the algorithm for convex functions.

In total, there are N ≜ (2n+ 1) = O(log T ) base learners with a two-layer structure, which is for
now necessary in this problem. The best base learner is the one with the right guess of the curvature
type and the closest guess of the curvature coefficient. Taking λ-strongly convex functions as an
example, the guessed coefficient of the best base learner (indexed by i⋆) satisfies λi⋆ ≤ λ ≤ 2λi⋆ .

Denoting by xt,i the decision generated by the i-th base learner at the t-th round, pt,i the weight of
the meta learner on the i-th base learner, an online ensemble method outputs the final decision as
xt =

∑
i∈[N ] pt,ixt,i. This forms a general framework for universal online learning and it remains to

select suitable algorithms and loss functions for the meta and base learners. We will illuminate our
concrete algorithm design in Section 3.1 and present a more detailed description of our meta/base
learners configurations in Appendix B.
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Algorithm 1 A Simple Approach for Universal Online Learning with Gradient Variations

Input: Meta learner A, base learners {Bi}i∈[N ]

1: Initialize: p1,i = 1/N and x1,i to be an arbitrary decision inside X for all i ∈ [N ]
2: for t = 1 to T do
3: Submit xt =

∑
i∈[N ] pt,ixt,i, suffer ft(xt), and observe the gradient ∇ft(xt)

# Meta Update:
4: A updates to pt+1 ∈ ∆N using the rule (B.5) with learning rate (B.6)

# Base Update:
5: Construct surrogates hexp

t,i (·) hsc
t,i(·), hc

t,i(·) defined in (3.1) using only ∇ft(xt)
6: Bi updates to xt+1,i using surrogates functions (3.1) and update rules (B.1)-(B.3) for i ∈ [N ]
7: end for

3 Our Approach

In this section, we present our approach for universal online learning with gradient-variation regret.
Section 3.1 presents the overall procedure of our proposed algorithm. Subsequently, we outline
our two key technical components: Section 3.2 presents a novel analysis to handle the empirical
gradient variation, and Section 3.3 introduces surrogate functions to improve efficiency and provides
a corresponding analysis for the empirical gradient variation defined on surrogates. We finally provide
the optimal universal gradient-variation regret guarantees in Section 3.4.

3.1 Overall Algorithm

In this part, we present our simple approach for universal online learning with gradient variations,
summarized in Algorithm 1. Basically, it is a two-layer online ensemble. Base learners are imple-
mented using the preliminary configurations given in Section 2.2 and on carefully designed surrogate
functions. The meta learner runs OPTIMISTIC-ADAPT-ML-PROD [Wei et al., 2016] on linearized
losses. We specify the algorithmic details below, and a more detailed procedure in Appendix B.

In Line 3, the learner makes a weighted combination of the base learners’ decisions {xt,i}i∈[N ] using
the meta learner’s weights pt = (pt,1, . . . , pt,N ), submits the final decision xt, suffers a loss ft(xt),
and receives a single ∇ft(xt) as the gradient feedback, using only 1 gradient query per round.

Meta Algorithm. In Line 4, the meta learner uses OPTIMISTIC-ADAPT-ML-PROD [Wei et al.,
2016] to update the weights by the following rule:

pt+1,i ∝ εt,i·exp(εt,imt+1,i)·Wt,i,Wt,i =
(
Wt−1,i · exp

(
εt−1,irt,i − ε2t−1,i(rt,i −mt,i)

)) εt,i
εt−1,i .

Specifically, denoting by ℓt,i ≜ ⟨∇ft(xt),xt,i⟩ the loss of the i-th dimension, the meta algorithm
inputs: rt,i = ⟨ℓt,pt⟩ − ℓt,i, the instantaneous regret; εt,i, a time-varying learning rate; and mt,i, an
estimation of the true loss of the t-th round (the choice of optimisms will be shown later). The meta
algorithm then outputs the weights pt+1 = (pt+1,1, . . . , pt+1,N ) of the next round.

With appropriate learning rates (B.6), OPTIMISTIC-ADAPT-ML-PROD achieves an optimistic second-
order bound of

∑
t≤T rt,i ≤ O(

√
logN

∑
t(rt,i −mt,i)2 + logN), where the logN factor is

negligible since the base learner number N equals O(log T ) and we can treat O(log log T ) as a
constant [Luo and Schapire, 2015]. The formal guarantee of OPTIMISTIC-ADAPT-ML-PROD is
deferred to Lemma 2 in the appendix. In our problem, the instantaneous regret rt,i = ⟨ℓt,pt⟩−ℓt,i =
⟨∇ft(xt),xt − xt,i⟩. Thus we choose mt,i = ⟨∇ft−1(xt−1),xt − xt,i⟩ for the convex base learner
and mt,i = 0 otherwise (i.e., for exp-concave and strongly convex base learners).2 By doing this,
we can upper-bound

∑
t⟨∇ft(xt),xt−xt,i⟩ by O(

√∑
t⟨∇ft(xt)−∇ft−1(xt−1),xt − xt,i⟩2) for

the convex base learner and by O(
√∑

t⟨∇ft(xt),xt − xt,i⟩2) otherwise. Later in Section 3.3, we
illuminate how such results could benefit the final regret guarantees.

2Although xt is unknown when using mt,i, we only need the scalar value of ⟨∇ft−1(xt−1),xt⟩, which is
bounded and can be efficiently solved via a one-dimensional fixed-point problem of ⟨∇ft−1(xt−1),xt(z)⟩ = z.
xt is a function of z because xt relies on pt,i, pt,i relies on mt,i and mt,i relies on z. Interested readers can
refer to Section 3.3 of Wei et al. [2016] for more details.
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Base Algorithm. In Line 5, we adopt carefully designed surrogate functions for different types
of base learners to reduce the gradient query complexity [Yan et al., 2023]. Specifically, strongly
convex, exp-concave, and the convex base learners run on the surrogate functions below respectively:

hsc
t,i(x) ≜ ⟨∇ft(xt),x⟩+

λi
4
∥x−xt∥2, hexp

t,i (x) ≜ ⟨∇ft(xt),x⟩+
αi
4
⟨∇ft(xt),x−xt⟩2, (3.1)

and hc
t,i(x) ≜ ⟨∇ft(xt),x⟩, where λi, αi are selected from the candidate coefficient pool H in (2.1).

We emphasize that the surrogate functions require only 1 gradient query ∇ft(xt) per round. Finally,
in Line 6, the i-th base learner Bi updates the decision to xt+1,i using optimistic online mirror descent
(OOMD) [Rakhlin and Sridharan, 2013], which is general and covers many algorithms of interest,
such as OGD and online Newton step. For each curvature type (convexity, exp-concavity, or strong
convexity), we adopt a correspondingly configured OOMD as the base learner. For detailed update
rules of differently configured OOMD, we refer readers to (B.1)-(B.3) in Appendix B.

As for previous works, Zhang et al. [2022a] adopted ADAPT-ML-PROD [Gaillard et al., 2014] as
the meta learner, which does not incorporate optimisms and thus is impossible to achieve gradient-
variation regret for convex functions, and operates on the original loss function ft(·) for base learners,
which leads to a less efficient gradient query complexity of O(log T ) per round. Yan et al. [2023]
used a two-layer meta algorithm MSMWC-MASTER [Chen et al., 2021] as the meta learner, resulting
in a three-layer ensemble structure, which is also not efficient enough. Compared with approaches
above, our Algorithm 1 is simpler and more efficient as it requires O(log T ) base learners and only 1
gradient query in each round. We emphasize that our contributions mainly lie in the technical aspects
showing that although simple, our approach can achieve the optimal universal gradient-variation
regret, which is accomplished via two novel analytical components.

3.2 Novel Analysis on Empirical Gradient Variations

In this part, we provide a novel analysis of the gradient-variation regret. For clarity, we illustrate
from the lowest level — as we only use one gradient ∇ft(xt) in the t-th round, to obtain the
gradient variation VT defined in (1.2), it is necessary to first attain its empirical version V̄T ≜∑
t≤T ∥∇ft(xt)−∇ft−1(xt−1)∥2. Previous studies decompose this term into two parts:

∥∇ft(xt)−∇ft−1(xt−1)∥2 ≲ ∥∇ft(xt)−∇ft−1(xt)∥2 + ∥∇ft−1(xt)−∇ft−1(xt−1)∥2

≤ supx∈X ∥∇ft(x)−∇ft−1(x)∥2 + L2∥xt − xt−1∥2,
using smoothness (i.e., Assumption 2). Aggregating the first term over T rounds leads to the de-
sired VT quantity and the remaining challenge is to control the algorithmic stability ∥xt − xt−1∥2.
Consequently, since each decision is a weighted combination of base learners’ decisions (i.e.,
xt =

∑
i≤N pt,ixt,i), the algorithmic stability is difficult to control. To this end, Yan et al. [2023]

decomposed the stability term in the following way:

∥xt − xt−1∥2 ≲
N∑
i=1

pt,i∥xt,i − xt−1,i∥2 + ∥pt − pt−1∥21. (3.2)

Consequently, for the first term, the authors injected correction terms to the meta learner follow-
ing Zhao et al. [2024]. To cancel the second term, the meta algorithm must include a corresponding
negative stability term in its analysis, while achieving an optimistic second-order bound simultane-
ously. To the best of our knowledge, the only feasible algorithm satisfying both requirements is the
two-layer meta algorithm MSMWC-MASTER [Chen et al., 2021], which leads to a three-layer online
ensemble structure and therefore affects the efficiency. Besides, it attains a second-order bound of the
form O(

√
QT,i logQT,i), where QT,i ≜

∑
t(ℓt,i −mt,i)

2, which causes the sub-optimality of the
regret guarantees with an additional logarithmic factor in the results of Yan et al. [2023].

In this work, we handle the empirical gradient variation alternatively via a novel and simple analysis
with two key parts: (i) a negative term arising from linearization; and (ii) a useful smoothness property.
First, we observe that the instantaneous regret can be transformed as:

ft(xt)− ft(x
⋆) = ⟨∇ft(xt),xt − x⋆⟩ − Dft(x⋆,xt), (3.3)

where x⋆ ∈ argminx∈X
∑
t ft(x) and Df (x,y) ≜ f(x)− f(y)− ⟨∇f(y),x− y⟩ is the Bregman

divergence associated with function f(·). The last term is a negative term from linearization, which

6



can be seen as the compensation by treating a convex function as a linear one. Previous studies on
the gradient-variation regret usually omit this term, while we show below that this negative term
helps to achieve a much simpler analysis of the empirical gradient variation. Second, we introduce
a useful property of smoothness, formally introduced below.
Proposition 1 (Theorem 2.1.5 of Nesterov [2018]). f(·) is L-smooth over Rd if and only if

∥∇f(x)−∇f(y)∥2 ≤ 2L · Df (y,x), for any x,y ∈ Rd. (3.4)

Compared with the commonly used ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, Proposition 1 gives a tighter
bound for the squared gradient changes since ∥∇f(x)−∇f(y)∥2 ≤ 2LDf (y,x) ≤ L2∥x− y∥2,
where the second step is due to Df (y,x) ≤ L

2 ∥x − y∥2, for any x,y ∈ Rd [Nesterov, 2018,
Theorem 2.1.5], intuitively making the analysis easier. Combining the Bregman divergence negative
term (3.3) and this useful property (3.4), we address the empirical gradient variation effectively as

V̄T ≲
T∑
t=2

(
∥∇ft(xt)−∇ft(x⋆)∥2 + ∥∇ft(x⋆)−∇ft−1(x

⋆)∥2 + ∥∇ft−1(x
⋆)−∇ft−1(xt−1)∥2

)
(3.4)
≲ L

T∑
t=2

Dft(x⋆,xt) + VT + L

T∑
t=2

Dft−1(x
⋆,xt−1) ≤ 2L

T∑
t=1

Dft(x⋆,xt) + VT , (3.5)

where the first step introduces intermediate terms ∇ft(x⋆) and ∇ft−1(x
⋆), the second step uses

Proposition 1, and the last step combines two summations into one by shifting the indexes of t. The
Bregman divergence negative term in (3.3) can cancel the positive term in (3.5), leaving only the
gradient variation quantity VT as desired.

Here we only require ∥∇f(x)−∇f(y)∥2 ≤ 2LDf (y,x) on X rather than Rd, which can be satisfied
by requiring L-smoothness only on a slightly larger domain than X (a relaxation of Assumption 2).
Interested readers can refer to Appendix A for details. Finally we end this part with several remarks.
Remark 1. We emphasize that the Bregman divergence negative term comes from the linearization
of convex functions, and is thus algorithm-independent. Therefore, we can eliminate the need to
control the algorithmic stability, in contrast to previous works for gradient-variation regret [Chiang
et al., 2012, Yan et al., 2023]. To the best of our knowledge, this is the first alternative analysis of the
gradient-variation regret since first proposed by Chiang et al. [2012]. ◁

Remark 2. Our idea of the negative term from linearization is inspired by the recent advance in
stochastic optimization [Joulani et al., 2020]. Note that they focus on a different problem of achieving
the O(1/T 2) rate as Nesterov’s accelerated gradient [Nesterov, 2018], while we investigate the
gradient-variation regret in the universal online (adversarial) convex optimization setup. ◁

Remark 3. Our analysis does not strictly outperform those that directly handle the stability term as
in (3.2), e.g., Yan et al. [2023], since the latter can be used for fast rates in the multi-player game
setup [Syrgkanis et al., 2015, Zhang et al., 2022b]. A more detailed discussion of the advantages and
disadvantages over previous approaches is provided in Section 4.3. ◁

3.3 Novel Analysis on Empirical Gradient Variations of Surrogates

Section 3.2 already suffices to achieve the optimal universal gradient-variation regret if multiple
gradient queries are permitted. In this part, we consider further improving the computational efficiency
by using only 1 gradient query per round, achieving the same gradient query complexity as OGD.

As stated in Section 3.1, we implement base algorithms on carefully designed surrogate functions
following Yan et al. [2023]. In this part, we show that additional novel analysis is required to handle
the empirical gradient variation defined on surrogates. To see this, we first provide the entire regret
decomposition to give readers a clear roadmap. Specifically, taking λ-strong convexity as an example,
the regret can be decomposed as follows:

REGT ≤
T∑
t=1

⟨∇ft(xt),xt − x⋆⟩ − λ

4

T∑
t=1

∥xt − x⋆∥2 − 1

2

T∑
t=1

Dft(x⋆,xt)

≤

[
T∑
t=1

rt,i⋆ − λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2
]
+

[
T∑
t=1

(
hsc
t,i⋆(xt,i⋆)− hsc

t,i⋆(x
⋆)
)]

− 1

2

T∑
t=1

Dft(x⋆,xt),
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where the first step uses (3.3) and the fact that Dft(x⋆,xt) ≥ λ
2 ∥xt − x⋆∥2 since ft(·) is λ-strongly

convex. The second step uses the definition of the best base learner (indexed by i⋆): λi⋆ ≤ λ ≤ 2λi⋆
and the definition of surrogate functions defined in (3.1). The first term above (meta regret) assesses
how well the algorithm tracks the best base learner, and the second term (base regret) measures the
best base learner’s performance. The meta regret contains a linearized regret with a negative term
from curvatures. This negative term is useful for exp-concave and strongly convex functions if the
linearized regret enjoys a second-order bound:

T∑
t=1

rt,i⋆ − λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2 ≲

√√√√ T∑
t=1

⟨∇ft(xt),xt − xt,i⋆⟩2 −
λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2 ≲
1

λ
,

where the 1/λ factor can be absorbed by the final regret O( 1λ log VT ). The base regret is defined on
the surrogates, which preserves the curvature properties, but using only 1 gradient ∇ft(xt).
Below we explain the reason for handling the empirical gradient variation defined on surrogates.
Taking the i-th strongly convex base learner as an example, it updates as xt,i = ΠX [x̂t,i− ηtmt] and
x̂t+1,i = ΠX [x̂t,i − ηt∇hsc

t,i(xt,i)], an initialization of the OOMD algorithm, where ηt represents
the step size, ΠX [x] = argminy∈X ∥x− y∥ denotes the Euclidean projection onto X , and x̂t,i is an
intermediate variable. With appropriately chosen step sizes, the base learner achieves an optimistic
bound of O(logDT ), where DT =

∑
t≤T ∥∇hsc

t,i(xt,i) −mt∥2 (e.g., please refer to Theorem 15
of Chiang et al. [2012]). Therefore, choosing the optimism as mt = ∇hsc

t−1,i(xt−1,i) leads to an
empirical gradient-variation bound O(logDT ) defined on surrogates,3 where

DT =

T∑
t=2

∥∇hsc
t,i(xt,i)−∇hsc

t−1,i(xt−1,i)∥2

=

T∑
t=2

∥∥∥∥∇ft(xt)−∇ft−1(xt−1) +
λi
2
(xt,i − xt)−

λi
2
(xt−1,i − xt−1)

∥∥∥∥2 .
The empirical gradient variation defined on the original functions, i.e., ∥∇ft(xt)−∇ft−1(xt−1)∥2,
can be handled via the analysis in Section 3.2. The main challenge is to deal with the rest terms
caused by the surrogate functions. Yan et al. [2023] overcame this issue by controlling (xt − xt−1)
and (xt,i − xt−1,i) separately. Again, as we have explained in Section 3.2, since the decision xt is a
weighted combination of base learners’ decisions (i.e., xt =

∑
i≤N pt,ixt,i), handling the algorithmic

stability term ∥xt − xt−1∥2 directly using (3.2) would results in a less efficient three-layer online
ensemble structure and the sub-optimality of the regret guarantees, as Yan et al. [2023] did.

In this work, we propose a novel analysis — while controlling (xt,i − xt)− (xt−1,i − xt−1) in each
individual round is hard, it can be bounded when aggregated over the time horizon. Specifically, we
bound it by combining two summations into one:
T∑
t=2

∥(xt,i−xt)−(xt−1,i−xt−1)∥2 ≲
T∑
t=2

∥xt,i−xt∥2+
T∑
t=2

∥xt−1,i−xt−1∥2 ≤ 2

T∑
t=1

∥xt,i−xt∥2.

The same idea is also used in the derivation of (3.5). Consequently, this term can be canceled out
by the negative term from curvatures in the meta regret. For this cancellation to occur, appropriate
coefficients are chosen, which are provided in the detailed proofs (e.g., the ‘Regret Analysis’ part in
the proof of Theorem 1) and are omitted here for clarity.

This simple and novel analysis eliminates the need to control the overall algorithmic stability term of
∥xt − xt−1∥2 required by previous works, and is essential for achieving the improved computational
efficiency and the optimal regret guarantees, as shown in the next part.

3.4 Optimal Universal Gradient-Variation Regret Guarantees

In this part, we present our main theoretical result — our simple and efficient Algorithm 1 (in
Section 3.1) which adopts two novel analyses (in Section 3.2 and Section 3.3) achieves the optimal

3For strongly convex functions, it is possible to choose mt = ∇ft−1(xt−1) to avoid additional surrogate-
induced terms, that will be discussed below. We choose the gradient of the last round as the optimism since this
is the the only choice at present to achieve an optimistic regret for exp-concave functions [Chiang et al., 2012].
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gradient-variation regret without requiring the curvature information in advance for universal online
learning. The corresponding proof is provided in Appendix C.

Theorem 1. Under Assumptions 1 and 2 (or the relaxed Assumption 3), Algorithm 1 achieves
O(log VT ), O(d log VT ), and O(

√
VT ) for strongly convex, exp-concave, and convex functions.

Theorem 1 improves the O(
√
VT log VT ) bound of Yan et al. [2023] and is optimal by matching the

best known results when the curvature information is known. It performs well when the gradient varia-
tion is small, such as f1 = f2 = · · · = fT (where VT = 0). Note that for α-exp-concave or λ-strongly
convex functions, our guarantee is actually O(min{ dα log VT ,

√
VT }) or O(min{ 1

λ log VT ,
√
VT }),

thus ensuring O(
√
VT ) even when α = O(1/T) or λ = O(1/T). This is because exp-concave and

strongly convex functions are also convex and thus our convex bound is still applicable.

4 Implication, Application, and Discussion

In this section, we validate the effectiveness of our results by the implication of small-loss regret
and the application in the SEA model. We also discuss the technical comparison with the previous
correction-based approach [Yan et al., 2023] at the end of this section.

4.1 Implication to Universal Small-Loss Regret

In this part, we illustrate that our universal gradient-variation regret in Theorem 1 implies the universal
small-loss regret measured by FT ≜ minx∈X

∑
t≤T ft(x) directly in analysis, i.e., without any

algorithmic modification, and thus safeguards the case of FT ≤ VT , such as minx∈X ft(x) = 0 for
any t ∈ [T ] (where FT = 0). The corresponding proof is provided in Appendix D.1.

Theorem 2. Under Assumptions 1 and 2 (or the relaxed Assumption 3), if the online functions
are non-negative, Algorithm 1 achieves O(logFT ), O(d logFT ), and O(

√
FT ) for strongly convex,

exp-concave, and convex functions, respectively.

Theorem 2 achieves the same optimal small-loss bounds as Zhang et al. [2022a]. Combined with
Theorem 1, our approach achieves the best known problem-dependent regret guarantees in the
universal online learning problem. In the end, we emphasize again that our approach is efficient as it
requires O(log T ) base learners and only 1 gradient query in each round.

4.2 Application to Stochastically Extended Adversarial (SEA) Model

Stochastically extended adversarial (SEA) model [Sachs et al., 2022] interpolates between stochastic
and adversarial online convex optimization. Formally, it assumes that the online function ft(·)
is sampled stochastically from an adversarially chosen distribution Dt. Denoting by Ft(·) ≜
Eft∼Dt

[ft(·)] the expected function, two terms capture the essential characteristics of SEA model:

σ2
1:T ≜

T∑
t=1

max
x∈X

Eft∼Dt

[
∥∇ft(x)−∇Ft(x)∥2

]
,Σ2

1:T ≜ E

[
T∑
t=2

sup
x∈X

∥∇Ft(x)−∇Ft−1(x)∥2
]
,

where σ2
1:T is the variance in sampling ft(·) from Dt(·) and Σ2

1:T is the variation of {Ft(·)}t∈[T ].
Sachs et al. [2022] initiated the study of the SEA model. For smooth expected functions {Ft(·)}Tt=1,
they achieved the optimal O(

√
σ2
1:T +Σ2

1:T ) regret for convex expected functions, and O((σ2
max +

Σ2
max) log T ) in the strongly convex case, where σ2

max ≜ maxt∈[T ] maxx∈X Eft∼Dt [∥∇ft(x) −
∇Ft(x)∥2] and Σ2

max ≜ maxt∈[T ] supx∈X ∥∇Ft(x) − ∇Ft−1(x)∥2. Subsequently, Chen et al.
[2024] improved the strongly convex regret to O((σ2

max+Σ2
max) log((σ

2
1:T+Σ2

1:T )/(σ
2
max+Σ2

max)))
and obtained O(d log(σ2

1:T +Σ2
1:T )) regret for exp-concave individual functions {ft(·)}Tt=1.

The gradient variation is essential in connecting the stochastic and adversarial optimization [Chen
et al., 2023, Lemma 4], which is also restated in (D.2). Therefore, universal gradient-variation regret
can be applied to this problem, achieving the same best known bounds as Chen et al. [2024], with a
single algorithm. Table 2 compares our results with existing ones. The following theorem presents
our results formally, with the corresponding proof provided in Appendix D.2.
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Table 2: Comparisons of our results with existing ones. The second column presents the regret bounds, where
σ2
1:T and Σ2

1:T represent the stochastic and adversarial statistics of the SEA problem. The last column indicates
whether the results can be achieved by a single algorithm (i.e., suitable in the universal setup). We achieve the
same state-of-the-art guarantees as Chen et al. [2024] using one single algorithm.

Works
Regret Bounds Single

Algorithm?Strongly Convex Exp-concave Convex

Sachs et al. [2022] O((σ2
max +Σ2

max) log T ) N/A O(
√
σ2
1:T +Σ2

1:T ) ✗

Chen et al. [2024] O
(
(σ2

max +Σ2
max) log

(
σ2
1:T+Σ2

1:T

σ2
max+Σ2

max

))
O(d log(σ2

1:T +Σ2
1:T )) O(

√
σ2
1:T +Σ2

1:T ) ✗

Sachs et al. [2023] O((σ2
max +Σ2

max +D2L2) log2 T ) N/A O(
√
T log T ) ✓

Yan et al. [2023] O((σ2
max +Σ2

max) log(σ
2
1:T +Σ2

1:T )) O(d log(σ2
1:T +Σ2

1:T )) O(
√
(σ2

1:T +Σ2
1:T ) log(σ

2
1:T +Σ2

1:T )) ✓

Ours O
(
(σ2

max +Σ2
max) log

(
σ2
1:T+Σ2

1:T

σ2
max+Σ2

max

))
O(d log(σ2

1:T +Σ2
1:T )) O(

√
σ2
1:T +Σ2

1:T ) ✓

Theorem 3. Under Assumption 1 and smoothness of Ft(·) for any t ∈ [T ]: if Ft(·) is convex,
Algorithm 1 achieves O(

√
σ2
1:T +Σ2

1:T ); if ft(·) is exp-concave, it achieves O(d log(σ2
1:T +Σ2

1:T ));
and if Ft(·) is strongly convex, it achieves O((σ2

max +Σ2
max) log((σ

2
1:T +Σ2

1:T )/(σ
2
max +Σ2

max))).

Theorem 3 requires exp-concavity of the individual function ft(·) rather than the expected function
Ft(·). This assumption is also used by Chen et al. [2023] and common in the studies of stochastic
exp-concave optimization [Mahdavi et al., 2015, Koren and Levy, 2015].

4.3 Discussion on Comparison with Correction-based Approach

In this part, we discuss the technical comparison with the previous correction-based approach [Yan
et al., 2023]. Compared with their approach, ours is simpler and achieves the optimal universal
problem-dependent regret (Theorem 1 and Theorem 2) and the best known guarantees in the SEA
model (Theorem 3). Although not providing guarantees as favorable as ours, Yan et al. [2023] can
control the overall algorithmic stability (i.e., ∥xt−xt−1∥2) using collaborative online ensemble [Zhao
et al., 2024], which is necessary in achieving fast rates in multi-player games [Syrgkanis et al., 2015].
For example, in a min-max game minx∈X maxy∈Y x⊤Ay, where A is a game matrix, since A
is unknown, the Nash equilibrium is typically computed through repeated play, i.e., player-x and
player-y select {xt}Tt=1 and {yt}Tt=1 sequentially to approach the Nash equilibrium. For player-x,
in the t-th round, it suffers a loss x⊤

t Ayt and receives the gradient Ayt. Similarly, player-y suffers
−x⊤

t Ayt and receives −Axt. For player-x, if it updates via OOMD, its gradient-variation regret
contains ∥Ayt −Ayt−1∥2, which includes the stability of player-y. In this case, to achieve fast rates,
we indeed need to control the algorithm stability like ∥xt − xt−1∥2 and ∥yt − yt−1∥2. This can be
done by Yan et al. [2023] while this work cannot since we do not directly control the algorithmic
stability. Interested readers can refer to Appendix A.2 in Yan et al. [2023] for more details.

5 Conclusion

In this work, we investigate universal online learning with gradient-variation regret. We propose
a simple two-layer online ensemble approach that not only achieves the optimal O( 1λ log VT ),
O( dα log VT ), and O(

√
VT ) regret simultaneously for λ-strongly convex, α-exp-concave, and convex

functions and is efficient with O(log T ) base learners and only 1 gradient query per round. This is
done via the negative Bregman divergence term from linearization and the useful smoothness property
of ∥∇f(x) −∇f(y)∥2 ≤ 2LDf (y,x). We further validate the effectiveness of our approach and
results by implying the optimal universal small-loss regret directly in analysis and achieving the best
known results in the stochastically extended adversarial model.

Two future directions are worth investigating. The first is to reduce the number of projections to only 1
in each round [Mhammedi et al., 2019, Zhao et al., 2022, Yang et al., 2024], thereby further improving
the computational efficiency. The second direction involves extending our algorithm and results to
the unconstrained domain using recent advances in parameter-free online learning [Orabona and
Pál, 2016, Cutkosky and Orabona, 2018, Jacobsen and Cutkosky, 2022], to broaden its applicability
across a wider range of scenarios.
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A On Smoothness Assumption

In this section, we propose a relaxation of the smoothness requirement to a slightly larger domain
than the feasible domain X , in contrast to the whole Rd space as in Assumption 2. The relaxed
smoothness assumption is detailed in the following.
Assumption 3 (Relaxed Smoothness). Under the condition of ∥∇ft(x)∥ ≤ G for any x ∈ X and
t ∈ [T ], all online functions are L-smooth: ∥∇ft(x)−∇ft(y)∥ ≤ L∥x− y∥ for any t ∈ [T ] and
x,y ∈ X+, where X+ ≜ {x+ b | x ∈ X ,b ∈ G/L · B} and B ≜ {x | ∥x∥ ≤ 1} is a unit ball.

The domain of Assumption 3 is slightly larger than X — for any x+ ∈ X+, we can always find an
x ∈ X such that ∥x+ − x∥ ≤ G/L. In this work, one of the key technical contributions is to handle
the empirical gradient variation via a useful smoothness property (Proposition 1). We show in the
following that this condition can be satisfied by requiring only Assumption 3.
Lemma 1. Under Assumption 1, for any online function f(·) satisfying Assumption 3, it holds that
∥∇f(x)−∇f(y)∥2 ≤ 2LDf (y,x) for any x,y ∈ X .

Proof. To begin with, we present the self-bounding property [Srebro et al., 2010], which is useful in
proving our result — if a function f : Rd 7→ R is L-smooth and bounded from below, then for any
x ∈ Rd, it holds that

∥∇f(x)∥2 ≤ 2L

(
f(x)− inf

y∈Rd
f(y)

)
. (A.1)

Next, we aim to prove that if we only need (A.1) on a bounded domain X , we require smoothness
only on a slightly larger domain than X . To see this, we delve into the proof of the self-bounding
property. Specifically, for any x,v ∈ Rd, it holds that

⟨−∇f(x),v⟩ − L

2
∥v∥2 ≤ f(x)− f(x+ v) ≤ f(x)− inf

y∈Rd
f(y),

where the first step requires smoothness on x and x+ v. Consequently, by taking maximization over
v, it holds that

f(x)− inf
y∈Rd

f(y) ≥ sup
v∈Rd

⟨−∇f(x),v⟩ − L

2
∥v∥2 =

1

2L
∥∇f(x)∥2,

which leads to the self-bounding property (A.1) by taking v = − 1
L∇f(x). The above proof is from

Theorem 4.23 of Orabona [2019]. This means that for the self-bounding property, we only require the
smoothness to hold for any x ∈ X and x− 1

L∇f(x). Under Assumption 1, this can be satisfied by
requiring smoothness on a slightly larger domain than X , namely, X+ ≜ {x+b|x ∈ X ,b ∈ G/L·B}.

Now we are ready to prove the final result. To begin with, we define a surrogate function of
g(x) ≜ f(x)− ⟨∇f(x0),x⟩ for any x ∈ X , where x0 ∈ X . Due to the above property we have just
proved, by requiring smoothness on X+, we have

∥∇g(x)∥2 ≤ 2L

(
g(x)− inf

y∈Rd
g(y)

)
.

Denoting by y⋆ ∈ argminy∈Rd g(y), the above inequality equals to

∥∇f(x)−∇f(x0)∥2 ≤ 2L (f(x)− ⟨∇f(x0),x⟩ − f(y⋆) + ⟨∇f(x0),y
⋆⟩)

= 2L(f(x)− f(y⋆)− ⟨∇f(x0),x− y⋆⟩),

due to the definition of g(·). The proof using the self-bounding property is from Theorem 2.1.5
of Nesterov [2018]. Finally, we note that g(·) is minimized at y⋆ = x0, leading to ∥∇f(x) −
∇f(x0)∥2 ≤ 2LDf (x0,x) for any x,x0 ∈ X , which finishes the proof.

B Omitted Details of Algorithm 1

In this section, we provide some omitted details of our Algorithm 1, including the losses and update
rules of the base and meta learners.
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Base Learners. To begin with, we duplicate the candidate coefficient pool (2.1) for both the exp-
concave coefficient α and the strongly convex coefficient λ, denoted by Hexp ≜ H and Hsc ≜ H.
Consequently, denoting by N exp = N sc ≜ |H| the size of candidate pool, for each αi ∈ Hexp and
λj ∈ Hsc, where i ∈ [N exp] and j ∈ [N sc], we define corresponding groups of base learners for
optimizing exp-concave and strongly convex functions. Specifically, for α-exp-concave functions, we
define a group of base learners {Bexp

i }i∈[N exp], where the i-th base learner runs the algorithm below:

xt,i = argmin
x∈X

{
⟨∇hexp

t−1,i(xt−1,i),x⟩+Dψt,i(x, x̂t,i)
}
,

x̂t+1,i = argmin
x∈X

{
⟨∇hexp

t,i (xt,i),x⟩+Dψt,i
(x, x̂t,i)

}
,

(B.1)

where ψt,i(x) ≜ 1
2x

⊤Ut,ix, Ut,i = (1 + αiG
2

2 )I + αi

2

∑t−1
s=1 ∇h

exp
s,i (xs,i)h

exp
s,i (xs,i)

⊤, αi is the i-th
element in Hexp, and hexp

t,i (·) is a surrogate loss function for Bexp
i , defined as

hexp
t,i (x) ≜ ⟨∇ft(xt),x⟩+

αi
4
⟨∇ft(xt),x− xt⟩2.

Similarly, for λ-strongly convex functions, we define a group of base learners {Bsc
i }i∈[N sc], where the

i-th base learner runs the algorithm below:

xt,i = ΠX [x̂t,i − ηt,i∇hsc
t−1,i(xt−1,i)], x̂t+1,i = ΠX [x̂t,i − ηt,i∇hsc

t,i(xt,i)], (B.2)

where ηt,i = 2/(1 + λit), λi is the i-th element in Hsc, and hsc
t,i(·) is a surrogate loss function for

Bsc
i , defined as

hsc
t,i(x) ≜ ⟨∇ft(xt),x⟩+

λi
4
∥x− xt∥2.

For convex functions, we only have to define one base learner Bc, which updates as

xt,i = ΠX [x̂t,i − ηt,i∇ft−1(xt−1)], x̂t+1,i = ΠX [x̂t,i − ηt,i∇ft(xt)], (B.3)

where ηt,i = min{D/
√
1 +

∑t−1
s=2 ∥∇ft(xt)−∇ft−1(xt−1)∥2, 1}. Finally, we conclude the con-

figurations of base learners. Specifically, we deploy

{Bi}i∈[N ] ≜ {Bexp
i }i∈[N exp] ∪ {Bsc

i }i∈[N sc] ∪ {Bc}, where N ≜ N exp +N sc + 1, (B.4)

as the total set of base learners.

Meta Learner. The meta learner simply runs OPTIMISTIC-ADAPT-ML-PROD [Wei et al., 2016],
which updates as follows:

pt+1,i ∝ εt,i · exp(εt,imt+1,i) ·Wt,i,

Wt,i =
(
Wt−1,i · exp

(
εt−1,irt,i − ε2t−1,i(rt,i −mt,i)

)) εt,i
εt−1,i ,

(B.5)

where ℓt,i ≜ ⟨∇ft(xt),xt,i⟩ is the loss of the i-th dimension, rt,i = ⟨ℓt,pt⟩ − ℓt,i represents the
instantaneous regret, mt,i = ⟨∇ft−1(xt−1),xt − xt,i⟩ for the index i indicating Bc and mt,i = 0
for indexes indicating Bexp and Bsc. The learning rate εt,i is chosen as

εt,i = min

{
1

8
,

√
lnN∑

s∈[t](rs,i −ms,i)2

}
. (B.6)

C Proof for Section 3

In this section, we provide the proof of Theorem 1, our main theoretical result for the optimal
universal gradient-variation regret.

Proof. We first give different decompositions of the regret for different curvature types, then analyze
the meta and base regret, and finally combine them to achieve the regret bound. For simplicity, we
define gt ≜ ∇ft(xt) and

V̄T ≜
T∑
t=2

∥∇ft(xt)−∇ft−1(xt−1)∥2
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for short. Using the analysis in Section 3.2, the empirical gradient variation can bounded as

V̄T ≤ 3

T∑
t=2

∥∇ft(xt)−∇ft(x⋆)∥2 + 3

T∑
t=2

∥∇ft(x⋆)−∇ft−1(x
⋆)∥2

+ 3

T∑
t=2

∥∇ft−1(x
⋆)−∇ft−1(xt−1)∥2 ≤ 6L

T∑
t=2

Dft(x⋆,xt) + 3VT + 6L

T∑
t=2

Dft−1
(x⋆,xt−1)

≤ 3VT + 12L

T∑
t=1

Dft(x⋆,xt). (C.1)

Regret Decomposition. Denoting by x⋆ ∈ argminx∈X
∑
t∈[T ] ft(x), for convex functions, we

decompose the regret as

REGT =

T∑
t=1

⟨gt,xt − x⋆⟩ −
T∑
t=1

Dft(x⋆,xt) (by (3.3))

=

T∑
t=1

⟨gt,xt − xt,i⋆⟩︸ ︷︷ ︸
META-REG

+

T∑
t=1

hc
t,i⋆(xt,i⋆)−

T∑
t=1

hc
t,i⋆(x

⋆)︸ ︷︷ ︸
BASE-REG

−
T∑
t=1

Dft(x⋆,xt), (C.2)

where hc
t,i(x) ≜ ⟨gt,x⟩.

For α-exp-concave functions, we decompose the regret as

REGT =

T∑
t=1

⟨gt,xt − x⋆⟩ − 1

2

T∑
t=1

Dft(x⋆,xt)−
1

2

T∑
t=1

Dft(x⋆,xt) (by (3.3))

≤
T∑
t=1

⟨gt,xt − x⋆⟩ − α

4

T∑
t=1

⟨gt,xt − x⋆⟩2 − 1

2

T∑
t=1

Dft(x⋆,xt)

≤
T∑
t=1

⟨gt,xt − xt,i⋆⟩ −
αi⋆

4

T∑
t=1

⟨gt,xt − xt,i⋆⟩2︸ ︷︷ ︸
META-REG

(by αi⋆ ≤ α ≤ 2αi⋆ )

+

T∑
t=1

hexp
t,i⋆(xt,i⋆)−

T∑
t=1

hexp
t,i⋆(x

⋆)︸ ︷︷ ︸
BASE-REG

−1

2

T∑
t=1

Dft(x⋆,xt), (C.3)

where the second step is due to the definitions of exp-concavity and Bregman divergence and the
last step is due to the definition of the surrogate function hexp

t,i (x) ≜ ⟨gt,x⟩+ αi

4 ⟨∇ft(xt),x− xt⟩2,
where αi ∈ H, defined in (2.1).

For λ-strongly convex functions, following the similar decomposition in the exp-concavity case,

REGT ≤
T∑
t=1

⟨gt,xt − xt,i⋆⟩ −
λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2︸ ︷︷ ︸
META-REG

(by λi⋆ ≤ λ ≤ 2λi⋆ )

+

T∑
t=1

hsc
t,i⋆(xt,i⋆)−

T∑
t=1

hsc
t,i⋆(x

⋆)︸ ︷︷ ︸
BASE-REG

−1

2

T∑
t=1

Dft(x⋆,xt), (C.4)

due to the definition of the surrogate hsc
t,i(x) ≜ ⟨gt,x⟩+ λi

4 ∥x− xt∥2, where λi ∈ H in (2.1).

Meta Regret Analysis. We adopt OPTIMISTIC-ADAPT-ML-PROD [Wei et al., 2016] as the meta
learner, and present its regret analysis below for self-containedness.
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Lemma 2 (Theorem 3.4 of Wei et al. [2016]). Denoting by pt the weights of the algorithm, ℓt the
loss vector, and mt,i the optimism, by choosing the learning rate optimally as (B.6), the regret of
OPTIMISTIC-ADAPT-ML-PROD (B.5) with respect to any expert i ∈ [N ] satisfies

T∑
t=1

⟨ℓt,pt − ei⟩ ≤ C0

√√√√1 +

T∑
t=1

(rt,i −mt,i)2 + C1,

where rt,i = ⟨ℓt,pt − ei⟩, ei denotes the i-th standard basis vector, C0 =
√
lnN + ln(1 + N

e (1 +

ln(T + 1)))/
√
lnN , and C1 = 1

4 (lnN + ln(1 + N
e (1 + ln(T + 1)))) + 2

√
lnN + 16 lnN .

Here we adopt ℓt,i = ⟨gt,xt,i⟩ such that ⟨ℓt,pt − ei⟩ = ⟨gt,xt − xt,i⟩. Besides, since the number
of base learners N = O(log T ) as explained in Section 2, the constants C0 and C1 are in the order
of O(log log T ) and can be treated as ignorable constants, following previous convention [Luo and
Schapire, 2015, Gaillard et al., 2014].

For convex functions, we choose the optimism as mt,i = ⟨gt−1,xt − xt,i⟩ for the index i indicating
the convex base learner. As explained in Section 3.1, although xt is unknown for now, we only
require the scalar value of ⟨gt−1,xt⟩. Denoting by z = ⟨gt−1,xt⟩, it actually forms a fixed-point
problem of z = ⟨gt−1,xt(z)⟩, where xt is a function of z since xt depends on pt,i, pt,i relies on
mt,i, and mt,i depends on z. Such a one-dimensional fixed-point problem can be solved with an
O(1/T ) approximation error through O(log T ) binary searches, and aggregating the approximate
error over the whole time horizon will only incur an additive constant to the final regret. As a result,
such an optimism setup is valid. Consequently, the meta regret in (C.2) can be bounded as

META-REG ≤ C0

√√√√1 +

T∑
t=1

⟨gt − gt−1,xt − xt,i⋆⟩2 + C1 (by Lemma 2)

≤ C0

√
1 +D2V̄T + C1 ≤ C0

√√√√1 + 3D2VT + 12LD2

T∑
t=1

Dft(x⋆,xt) + C1 (by (C.1))

≤ O(
√
VT ) + C0

√√√√12LD2

T∑
t=1

Dft(x⋆,xt) ≤ O(
√
VT ) +O(C2) +

C0

2C2

T∑
t=1

Dft(x⋆,xt),

where the second step adopts Assumption 1, the fourth step uses
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0,

the last step uses AM-GM inequality:
√
ab ≤ ax

2 + b
2x for any a, b, x > 0. Note that C2 is used to

ensure the positive Bregman divergence term to be canceled and will be specified in the end.

For exp-concave functions, we choose the optimism as mt,i = 0 for indexes i indicating exp-concave
base learners. By Lemma 2, the meta regret in (C.3) can be bounded as

META-REG ≤ C0

√√√√1 +

T∑
t=1

⟨gt,xt − xt,i⋆⟩2 −
αi⋆

4

T∑
t=1

⟨gt,xt − xt,i⋆⟩2 + C1

≤ O(C3) +

(
C0

2C3
− αi⋆

4

) T∑
t=1

⟨gt,xt − xt,i⋆⟩2, (C.5)

where the last step omits the ignorable additive C0 or C1 terms and is due to AM-GM inequality. C2

is a constant to be specified.

For strongly convex functions, we choose the optimism mt,i = 0 for indexes i indicating strongly
convex base learners. By Lemma 2, the meta regret in (C.4) can be bounded as

META-REG ≤C0

√√√√1 +

T∑
t=1

⟨gt,xt − xt,i⋆⟩2 −
λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2 + C1 (by Lemma 2)

≤ C0

√√√√1 +D2

T∑
t=1

∥xt − xt,i⋆∥2 −
λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2 + C1 (by Assumption 1)
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≤ O(C4) +

(
C0D

2

2C4
− λi⋆

4

) T∑
t=1

∥xt − xt,i⋆∥2, (C.6)

where the last step omits the ignorable additive C0 or C1 terms and is due to AM-GM inequality. C4

is a constant to be specified.

Base Regret Analysis. For convex functions, when using the update rule (B.3), due to the standard
analysis of OOMD for convex functions (e.g., Lemma 10 of Yan et al. [2023]), it holds that

BASE-REG ≤ 5D

√√√√1 +

T∑
t=2

∥∇hc
t,i⋆(xt,i⋆)−∇hc

t−1,i⋆(xt−1,i⋆)∥2 +O(1)

= 5D
√

1 + V̄T +O(1) ≤ O(
√
VT ) + 5D

√√√√12L

T∑
t=1

Dft(x⋆,xt) (by (C.1))

≤ O(
√
VT ) +O(C5) +

5D

2C5

T∑
t=1

Dft(x⋆,xt),

where the second step is due to the property of the surrogate function: ∇hc
t,i(xt,i) = gt, and the last

step uses AM-GM inequality. C5 is a constant to be specified.

For exp-concave functions, when using the update rule (B.1), due to the standard analysis of OOMD
for exp-concave functions (e.g., Lemma 11 of Yan et al. [2023]), the base regret can be bounded as

BASE-REG ≤ 16d

αi⋆
ln

(
1 +

αi⋆

8d

T∑
t=2

∥∥∇hexp
t,i⋆(xt,i⋆)−∇hexp

t−1,i⋆(xt−1,i⋆)
∥∥2)+O(1). (C.7)

Next, we analyze the empirical gradient variation defined on the surrogate function hexp
t,i (·):

T∑
t=2

∥∥∇hexp
t,i⋆(xt,i⋆)−∇hexp

t−1,i⋆(xt−1,i⋆)
∥∥2

=

T∑
t=2

∥∥∥gt + αi⋆

2
gt⟨gt,xt − xt,i⋆⟩ − gt−1 −

αi⋆

2
gt−1⟨gt−1,xt−1 − xt−1,i⋆⟩

∥∥∥2
≤ 3V̄T + 3

T∑
t=2

∥∥∥αi⋆
2

gt⟨gt,xt − xt,i⋆⟩
∥∥∥2 + 3

T∑
t=2

∥∥∥αi⋆
2

gt−1⟨gt−1,xt−1 − xt−1,i⋆⟩
∥∥∥2

≤ 3V̄T + 6

T∑
t=1

∥∥∥αi⋆
2

gt⟨gt,xt − xt,i⋆⟩
∥∥∥2 (C.8)

≤ 9VT + 36L

T∑
t=1

Dft(x⋆,xt) + 2α2
i⋆G

2
T∑
t=1

⟨gt,xt − xt,i⋆⟩2, (by (C.1) and Assumption 1)

where the first step is due to the property of the surrogate function: ∇hexp
t,i (xt,i) = gt+

αi

2 gt⟨gt,xt−
xt,i⟩, the second step is by the Cauchy-Schwarz inequality: (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for any
a, b, c ∈ R. Plugging the surrogate’s empirical gradient variation back to the base regret, we obtain

BASE-REG ≤ 16d

αi⋆
ln

(
1 +

9αi⋆

8d
VT +

9αi⋆L

2d

T∑
t=1

Dft(x⋆,xt) +
α3
i⋆G

2

4d

T∑
t=1

⟨gt,xt − xt,i⋆⟩2
)

≤ O
(
d

α
ln(C6VT )

)
+

16d

C6αi⋆

(
9αi⋆L

2d

T∑
t=1

Dft(x⋆,xt) +
α3
i⋆G

2

4d

T∑
t=1

⟨gt,xt − xt,i⋆⟩2
)

≤ O
(
d

α
lnVT

)
+

72L

C6

T∑
t=1

Dft(x⋆,xt) +
4G2

C6

T∑
t=1

⟨gt,xt − xt,i⋆⟩2 +O(lnC6).
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The second step requires C6 ≥ 1 by Lemma 5 and uses the property of the best base learner, i.e.,
αi⋆ ≤ α ≤ 2αi⋆ . The last step is because of αi ≤ 1.

For strongly convex functions, when using the update rule (B.2), due to the analysis of OOMD for
strongly convex functions (e.g., Lemma 12 of Yan et al. [2023]), the base regret can be bounded as

BASE-REG ≤ 16G2

λi⋆
ln

(
1 + λi⋆

T∑
t=2

∥∥∇hsc
t,i⋆(xt,i⋆)−∇hsc

t−1,i⋆(xt−1,i⋆)
∥∥2)+O(1). (C.9)

Next, we analyze the empirical gradient variation defined on the surrogate function hsc
t,i(·):

T∑
t=2

∥∥∇hsc
t,i⋆(xt,i⋆)−∇hsc

t−1,i⋆(xt−1,i⋆)
∥∥2

=

T∑
t=2

∥∥∥∥gt + λi⋆

2
(xt,i⋆ − xt)− gt−1 −

λi⋆

2
(xt−1,i⋆ − xt−1)

∥∥∥∥2

≤ 3V̄T + 3

T∑
t=2

∥∥∥∥λi⋆2 (xt,i⋆ − xt)

∥∥∥∥2 + 3

T∑
t=2

∥∥∥∥λi⋆2 (xt−1,i⋆ − xt−1)

∥∥∥∥2 (C.10)

≤ 9VT + 36L

T∑
t=1

Dft(x⋆,xt) + 2λ2i⋆

T∑
t=1

∥xt,i⋆ − xt∥2 , (by (C.1))

where the first step is due to the property of the surrogate: ∇hsc
t,i(xt,i) = gt +

λi

2 (xt,i − xt), and the
second step is due to the Cauchy-Schwarz inequality. Plugging the surrogate’s empirical gradient
variation back to the base regret, we obtain

BASE-REG ≤ 16G2

λi⋆
ln

(
1 + 9λi⋆VT + 36Lλi⋆

T∑
t=1

Dft(x⋆,xt) + 2λ3i⋆

T∑
t=1

∥xt,i⋆ − xt∥2
)

≤ O
(
1

λ
ln(C7VT )

)
+

16G2

C7λi⋆

(
36Lλi⋆

T∑
t=1

Dft(x⋆,xt) + 2λ3i⋆

T∑
t=1

∥xt,i⋆ − xt∥2
)

≤ O
(
1

λ
lnVT

)
+

576G2L

C7

T∑
t=1

Dft(x⋆,xt) +
32G2

C7

T∑
t=1

∥xt,i⋆ − xt∥2 +O(lnC7),

where the second step requires C7 ≥ 1 by Lemma 5 and uses the property of the best base learner,
i.e., λi⋆ ≤ λ ≤ 2λi⋆ . The last step is due to λi ≤ 1.

Regret Analysis. For convex functions, by combining the meta and base regret, it holds that

REGT ≤ O(
√
VT ) +O(C2 + C5) +

(
C0

2C2
+

5D

2C5
− 1

) T∑
t=1

Dft(x⋆,xt) ≤ O(
√
VT ),

by choosing C2 = C0 and C5 = 5D.

For exp-concave functions, by combining the meta and base regret, it holds that

REGT ≤ O
(
d

α
lnVT

)
+O(C3 + lnC6) +

(
C0

2C3
+

4G2

C6
− αi⋆

4

) T∑
t=1

⟨gt,xt − xt,i⋆⟩2

+

(
72L

C6
− 1

2

) T∑
t=1

Dft(x⋆,xt) ≤ O
(
d

α
lnVT

)
,

by choosing C6 = max{1, 144L, 32G
2

αi⋆
} and C3 = 4C0

αi⋆
. Note that such a parameter configuration

will only add an O(1/α) factor to the final regret bound, which can be absorbed.

For strongly convex functions, by combining the meta and base regret, it holds that

REGT ≤ O
(
1

λ
lnVT

)
+O(C4 + lnC7) +

(
C0D

2

2C4
+

32G2

C7
− λi⋆

4

) T∑
t=1

∥xt − xt,i⋆∥2
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+

(
576G2L

C7
− 1

2

) T∑
t=1

Dft(x⋆,xt) ≤ O
(
1

λ
lnVT

)
,

by choosing C7 = max{1, 1152G2L, 256G
2

λi⋆
} and C4 = 4C0D

2

λi⋆
. Note that such a parameter configu-

ration will only add an O(1/λ) factor to the final regret bound, which can be absorbed.

Note that the constantsC2, C3, C4, C5, C6, C7 only exist in analysis and thus can be chosen arbitrarily,
finishing the proof.

D Proofs for Section 4

In this section, we provide proofs for Section 4, including Theorem 2 and Theorem 3.

D.1 Proof of Theorem 2

Proof. To begin with, we give a different decomposition for the empirical gradient variation V̄T :

V̄T ≤ 2
T∑
t=2

∥gt∥2 + 2
T∑
t=2

∥gt−1∥2 ≤ 4
T∑
t=1

∥gt∥2 ≤ 16L
T∑
t=1

ft(xt), (D.1)

where the last step is by the self-bounding property (A.1) for non-negative functions. For simplicity,
we denote by F̄T ≜

∑T
t=1 ft(xt).

The regret decomposition is the same as that in the proof of Theorem 1 (i.e., (C.2), (C.3), and (C.4)),
and thus omitted here. In the following, we analyze the meta and base regret, and combine them for
the final regret bounds.

Meta Regret Analysis. Our Algorithm 1 achieves the small-loss bounds without modifying the
algorithm. As a result, the meta algorithm and the corresponding step size and optimism configurations
are the same as that in the proof of Theorem 1.

For convex functions, by choosing the optimism as mt,i = ⟨gt−1,xt−xt,i⟩ for the index i indicating
the base learner for the convex case, the meta regret in (C.2) can be bounded as

META-REG ≤ C0

√√√√1 +

T∑
t=1

⟨gt − gt−1,xt − xt,i⋆⟩2 + C1 (by Lemma 2)

≤ C0

√
1 +D2V̄T + C1 ≤ C0

√
1 + 16D2LF̄T + C1. (by Assumption 1 and (D.1))

For exp-concave functions, we choose the optimism as mt,i = 0 for indexes i indicating the exp-
concave base learners. The meta regret is bounded in the same way as (C.5).

For strongly convex functions, we choose the optimism as mt,i = 0 for indexes i indicating the
strongly convex base learners. The meta regret is bounded in the same way as (C.6).

Base Regret Analysis. For convex functions, using the same base algorithms as in the proof of
Theorem 1, the base regret can be bounded as

BASE-REG ≤ 5D
√
1 + V̄T +O(1) ≤ 5D

√
1 + 16LF̄T +O(1).

For exp-concave functions, using the same base algorithms as in the proof of Theorem 1, the base
regret can be bounded by (C.7). Following (C.8), the empirical gradient variation defined on the
surrogate function hexp

t,i (·) can be bounded as

T∑
t=2

∥∥∇hexp
t,i⋆(xt,i⋆)−∇hexp

t−1,i⋆(xt−1,i⋆)
∥∥2 ≤ 3V̄T + 6

T∑
t=1

∥∥∥αi⋆
2

gt⟨gt,xt − xt,i⋆⟩
∥∥∥2

≤ 48LF̄T + 2α2
i⋆G

2
T∑
t=1

⟨gt,xt − xt,i⋆⟩2. (by Assumption 1 and (D.1))
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Plugging the surrogate’s empirical gradient variation back to the base regret, we obtain

BASE-REG ≤ 16d

αi⋆
ln

(
1 +

6Lαi⋆

d
F̄T +

α3
i⋆G

2

4d

T∑
t=1

⟨gt,xt − xt,i⋆⟩2
)

+O(1)

≤ 16d

αi⋆
ln

(
C8

(
1 +

6Lαi⋆

d
F̄T

))
+

16d

C8αi⋆

(
α3
i⋆G

2

4d

T∑
t=1

⟨gt,xt − xt,i⋆⟩2
)

≤ 32d

α
ln

(
1 +

6L

d
F̄T

)
+

4G2

C8

T∑
t=1

⟨gt,xt − xt,i⋆⟩2 +O(lnC8),

where the second step requires C8 ≥ 1 by Lemma 5 and uses the property of the best base learner,
i.e., αi⋆ ≤ α ≤ 2αi⋆ . The last step is due to αi ≤ 1.

For strongly convex functions, using the same base algorithms as in the proof of Theorem 1, the base
regret can be bounded by (C.9). Following (C.10), the empirical gradient variation defined on the
surrogate function hsc

t,i(·) can be bounded as

T∑
t=2

∥∥∇hsc
t,i⋆(xt,i⋆)−∇hsc

t−1,i⋆(xt−1,i⋆)
∥∥2 ≤ 3V̄T + 6

T∑
t=1

∥∥∥∥λi⋆2 (xt,i⋆ − xt)

∥∥∥∥2

≤ 48LF̄T + 2λ2i⋆

T∑
t=1

∥xt,i⋆ − xt∥2. (by (D.1))

Plugging the surrogate’s empirical gradient variation back to the base regret, we obtain

BASE-REG ≤ 16G2

λi⋆
ln

(
1 + 48Lλi⋆ F̄T + 2λ3i⋆

T∑
t=1

∥xt,i⋆ − xt∥2
)

+O(1)

≤ 16G2

λi⋆
ln
(
C9

(
1 + 48Lλi⋆ F̄T

))
+

16G2

C9λi⋆

(
2λ3i⋆

T∑
t=1

∥xt,i⋆ − xt∥2
)

≤ 32G2

λ
ln(1 + 48LF̄T ) +

32G2

C9

T∑
t=1

∥xt,i⋆ − xt∥2 +O(lnC9),

where the second step requires C9 ≥ 1 by Lemma 5 and uses the property of the best base learner,
i.e., λi⋆ ≤ λ ≤ 2λi⋆ . The last step is due to λi ≤ 1.

Regret Analysis. For convex functions, by combining the meta and base regret, it holds that

REGT ≤ C0

√
1 + 16D2LF̄T + 5D

√
1 + 16LF̄T + C1 ≤ O(

√
FT ),

where the last step is due to Lemma 9 of Zhao et al. [2024], restated below for self-containedness.

Lemma 3 (Lemma 9 of Zhao et al. [2024]). For any x, y, a, b > 0 satisfying x− y ≤
√
ax+ b, it

holds that x− y ≤
√
ay + ab+ a+ b.

For exp-concave functions, by combining the meta and base regret, it holds that

REGT ≤
(
C0

2C3
+

4G2

C8
− αi⋆

4

) T∑
t=1

⟨gt,xt − xt,i⋆⟩2 +
32d

α
ln

(
1 +

6L

d
F̄T

)
+O(C3 + lnC8)

≤ 32d

α
ln

(
1 +

6L

d
F̄T

)
+O(1) ≤ O

(
d

α
lnFT

)
, (by Lemma 6)

where the second step chooses C3 = 4C0

αi⋆
and C8 = max{1, 32G

2

αi⋆
}. Note that such a parameter

configuration will only add an O(1/α) factor to the final regret bound, which can be absorbed.

For strongly convex functions, by combining the meta and base regret, it holds that

REGT ≤
(
C0D

2

2C4
+

32G2

C9
− λi⋆

4

) T∑
t=1

∥xt − xt,i⋆∥2 +
32G2

λ
ln(1 + 48LF̄T ) +O(C4 + lnC9)
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≤ 32G2

λ
ln(1 + 48LF̄T ) ≤ O

(
1

λ
lnFT

)
, (by Lemma 6)

where the second step is by choosing C4 = 4C0D
2

λi⋆
and C9 = max{1, 256G

2

λi⋆
}. Note that such a

parameter configuration will only add an O(1/λ) factor to the final regret bound, which can be
absorbed. Also note that the constants C3, C4, C8, C9 only exist in analysis and thus can be chosen
arbitrarily, finishing the proof.

D.2 Proof of Theorem 3

Proof. To begin with, we give a different analysis of the empirical gradient variation:

E[V̄T ] ≤ 5E

[
T∑
t=2

∥∇ft(xt)−∇Ft(xt)∥2
]
+ 5

T∑
t=2

∥∇Ft(xt)−∇Ft(x⋆)∥2

+5E

[
T∑
t=2

∥∇Ft(x⋆)−∇Ft−1(x
⋆)∥2

]
+ 5

T∑
t=2

∥∇Ft−1(x
⋆)−∇Ft−1(xt−1)∥2

+5E

[
T∑
t=2

∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥2
]
≤ 10σ2

1:T + 5Σ2
1:T + 20L

T∑
t=1

DFt
(x⋆,xt), (D.2)

where the first step is due to Cauchy-Schwarz inequality and the last step is because of the definitions
of σ2

1:T and Σ2
1:T (given in Section 4) and the analysis proposed in Section 3.2.

In the following, we first give regret decompositions for different curvature types, then we analyze
the meta and base regret, and combine them for the final regret guarantees.

Regret Decomposition. Denoting by x⋆ ∈ argminx∈X
∑
t∈[T ] ft(x), for convex functions, we

decompose the regret as

E[REGT ] = E

[
T∑
t=1

Ft(xt)−
T∑
t=1

Ft(x
⋆)

]
= E

[
T∑
t=1

⟨∇Ft(xt),xt − x⋆⟩

]
−

T∑
t=1

DFt
(x⋆,xt)

= E

[
T∑
t=1

⟨∇ft(xt),xt − x⋆⟩

]
−

T∑
t=1

DFt(x
⋆,xt)

= E

[
T∑
t=1

⟨gt,xt − xt,i⋆⟩

]
︸ ︷︷ ︸

META-REG

+E

[
T∑
t=1

hc
t,i⋆(xt,i⋆)− hc

t,i⋆(x
⋆)

]
︸ ︷︷ ︸

BASE-REG

−
T∑
t=1

DFt
(x⋆,xt),

where the first and third step use Ft(x) = E[ft(x)], the second step uses the definition of Bregman
divergence, and the fourth step is due to hc

t,i(x) ≜ ⟨gt,x⟩.
For exp-concave functions, following the similar decomposition as in the proof of Theorem 1 in
Appendix C, we decompose the regret as

E[REGT ] = E

[
T∑
t=1

⟨∇Ft(xt),xt − x⋆⟩

]
− 1

2

T∑
t=1

DFt
(x⋆,xt)−

1

2

T∑
t=1

DFt
(x⋆,xt)

= E

[
T∑
t=1

⟨∇ft(xt),xt − x⋆⟩

]
− 1

2

T∑
t=1

Dft(x⋆,xt)−
1

2

T∑
t=1

DFt
(x⋆,xt)

≤ E

[
T∑
t=1

⟨gt,xt − x⋆⟩

]
− α

4

T∑
t=1

⟨gt,xt − x⋆⟩2 − 1

2

T∑
t=1

DFt
(x⋆,xt)

≤
T∑
t=1

⟨gt,xt − xt,i⋆⟩ −
αi⋆

4

T∑
t=1

⟨gt,xt − xt,i⋆⟩2︸ ︷︷ ︸
META-REG
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+ E

[
T∑
t=1

hexp
t,i⋆(xt,i⋆)− hexp

t,i⋆(x
⋆)

]
︸ ︷︷ ︸

BASE-REG

−1

2

T∑
t=1

DFt
(x⋆,xt),

where the second step uses the definition of the expected function Ft(·), the third step requires the
exp-concavity of ft(·), and the fourth step is due to hexp

t,i (x) ≜ ⟨gt,x⟩ + αi

4 ⟨∇ft(xt),x − xt⟩2,
where αi ∈ H, defined in (2.1).

For strongly convex functions, following the similar decomposition as in Appendix C, we have

E[REGT ] = E

[
T∑
t=1

⟨∇Ft(xt),xt − x⋆⟩

]
− 1

2

T∑
t=1

DFt(x
⋆,xt)−

1

2

T∑
t=1

DFt(x
⋆,xt)

≤ E

[
T∑
t=1

⟨gt,xt − x⋆⟩

]
− λ

4

T∑
t=1

∥xt − x⋆∥2 − 1

2

T∑
t=1

DFt
(x⋆,xt)

≤
T∑
t=1

⟨gt,xt − xt,i⋆⟩ −
λi⋆

4

T∑
t=1

∥xt − xt,i⋆∥2︸ ︷︷ ︸
META-REG

+ E

[
T∑
t=1

hsc
t,i⋆(xt,i⋆)− hsc

t,i⋆(x
⋆)

]
︸ ︷︷ ︸

BASE-REG

−1

2

T∑
t=1

DFt(x
⋆,xt),

where the second step, different from the exp-concave case, only requires the strong convexity of
Ft(·), and the third step is due to hsc

t,i(x) ≜ ⟨gt,x⟩+ λi

4 ∥x− xt∥2, where λi ∈ H, defined in (2.1).

Meta Regret Analysis. Our Algorithm 1 can be applied to the SEA model without any algorithm
modifications. As a result, we directly use the same parameter configurations as in the proof of
Theorem 1 (i.e., in Appendix C).

For convex functions, the meta regret can be bounded as

META-REG ≤ E
[
C0

√
1 +D2V̄T + C1

]
≤ C0

√
1 +D2E[V̄T ] + C1

≤ C0

√√√√1 + 5D2(2σ2
1:T +Σ2

1:T ) + 20D2L

T∑
t=1

DFt
(x⋆,xt) + C1 (by (D.2))

≤ O
(√

σ2
1:T +Σ2

1:T

)
+O(C10) +

C0

2C10

T∑
t=1

DFt
(x⋆,xt),

where the second step is by Jensen’s inequality and the last step is due to AM-GM inequality. C10 is
a constant to be specified.

For exp-concave and strongly convex functions, the meta regret is bounded in the same way as (C.5)
and (C.6), and thus omitted here.

Base Regret Analysis. For convex functions, the base regret can be bounded as

BASE-REG ≤ 5D
√
1 + E[V̄T ] ≤ 5D

√√√√1 + 10σ2
1:T + 5Σ2

1:T + 20L

T∑
t=1

DFt
(x⋆,xt)

≤ O
(√

σ2
1:T +Σ2

1:T

)
+O(C11) +

5D

2C11

T∑
t=1

DFt
(x⋆,xt),

where the first step is by Jensen’s inequality, the second step is due to (D.2), and the last step is
because of AM-GM inequality. C11 is a constant to be specified.
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For exp-concave functions, the base regret is bounded by (C.7). Following (D.2), we control the
empirical gradient variation defined on surrogates as

E

[
T∑
t=2

∥∥∇hexp
t,i⋆(xt,i⋆)−∇hexp

t−1,i⋆(xt−1,i⋆)
∥∥2] ≤ 3E[V̄T ] + 6

T∑
t=1

∥∥∥αi⋆
2

gt⟨gt,xt − xt,i⋆⟩
∥∥∥2

≤ 15(2σ2
1:T +Σ2

1:T ) + 60L

T∑
t=1

DFt(x
⋆,xt) + 2α2

i⋆G
2
T∑
t=1

⟨gt,xt − xt,i⋆⟩2.

Plugging the surrogate’s empirical gradient variation back to the base regret, we obtain

BASE-REG ≤ 16d

αi⋆
ln

(
1 +

15αi⋆

8d
(2σ2

1:T +Σ2
1:T ) +

15Lαi⋆

2d

T∑
t=1

DFt
(x⋆,xt)

+
α3
i⋆G

2

4d

T∑
t=1

⟨gt,xt − xt,i⋆⟩2
)

≤ O
(
d

α
ln
(
σ2
1:T +Σ2

1:T

))
+O(lnC12)

+
120L

C12

T∑
t=1

DFt
(x⋆,xt) +

4G2

C12

T∑
t=1

⟨gt,xt − xt,i⋆⟩2,

where the second step requires C12 ≥ 1 by Lemma 5.

For strongly convex functions, we need to delve into the proof details of the base algorithm, i.e.,
OOMD (B.2) for strongly convex functions with step size ηt = 2/(1 + λit). For example, from
Lemma 12 of Yan et al. [2023], the base regret can be bounded as

BASE-REG ≤ 4

T∑
t=2

1

λi⋆t
E
[∥∥∇hsc

t,i⋆(xt,i⋆)−∇hsc
t−1,i⋆(xt−1,i⋆)

∥∥2]+O(1).

Subsequently, we analyze the empirical gradient variation defined on surrogates in each round, i.e.,
∥∇hsc

t,i⋆(xt,i⋆)−∇hsc
t−1,i⋆(xt−1,i⋆)∥2. Denoting by σ2

t ≜ maxx∈X Eft∼Dt
[∥∇ft(x)−∇Ft(x)∥2]

and Σ2
t ≜ E[supx∈X ∥∇Ft(x)−∇Ft−1(x)∥2] for simplicity,

E
[∥∥∇hsc

t,i⋆(xt,i⋆)−∇hsc
t−1,i⋆(xt−1,i⋆)

∥∥2]
= E

[∥∥∥∥gt + λi⋆

2
(xt,i⋆ − xt)− gt−1 −

λi⋆

2
(xt−1,i⋆ − xt−1)

∥∥∥∥2
]

≤ 3E
[
∥gt − gt−1∥2

]
+ 3

∥∥∥∥λi⋆2 (xt,i⋆ − xt)

∥∥∥∥2 + 3

∥∥∥∥λi⋆2 (xt−1,i⋆ − xt−1)

∥∥∥∥2
≤ 15(σ2

t + σ2
t−1 + 2LDFt

(x⋆,xt) + 2LDFt−1
(x⋆,xt−1) + Σ2

t ) (by (D.2))

+ λ2i⋆∥xt,i⋆ − xt∥2 + λ2i⋆∥xt−1,i⋆ − xt−1∥2,
where the first step is due to the property of the surrogate: ∇hsc

t,i(xt,i) = gt +
λi

2 (xt,i − xt), and the
second step is due to the Cauchy-Schwarz inequality. Plugging the above term back into the base
regret and omitting the ignorable O(1) term, we achieve

BASE-REG ≤ 60

λi⋆

T∑
t=2

σ2
t + σ2

t−1 +Σ2
t

t
+ 120L

T∑
t=2

DFt
(x⋆,xt) +DFt−1

(x⋆,xt−1)

λi⋆t

+ 4

T∑
t=2

λ2i⋆∥xt,i⋆ − xt∥2 + λ2i⋆∥xt−1,i⋆ − xt−1∥2

λi⋆t
,

To handle the above term of
∑T
t=1 at/t for some variable sequence {at}Tt=1, we import a useful

lemma from Yan et al. [2023].

Lemma 4 (Lemma 9 of Yan et al. [2023]). For a sequence of {at}Tt=1 and b, where at, b > 0 for any
t ∈ [T ], denoting by amax ≜ maxt at and A ≜ ⌈b

∑T
t=1 at⌉, we have

T∑
t=1

at
bt

≤ amax

b
(1 + lnA) +

1

b2
.
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Using Lemma 4, we control the base regret as

BASE-REG ≤ O
(
1

λ

(
σ2
max +Σ2

max

)
ln

σ2
1:T +Σ2

1:T

σ2
max +Σ2

max

)
+

480LGD

λi⋆
ln

(
1 + 2λi⋆

T∑
t=1

DFt
(x⋆,xt)

)
+

8D2

λi⋆
ln

(
1 + 2λ3i⋆

T∑
t=1

∥xt,i⋆ − xt∥2
)

≤ O
(
1

λ

(
σ2
max +Σ2

max

)
ln

σ2
1:T +Σ2

1:T

σ2
max +Σ2

max

)
+O(lnC13 + lnC14)

+
960LGD

C13

T∑
t=1

DFt
(x⋆,xt) +

16D2

C14

T∑
t=2

∥xt,i⋆ − xt∥2,

where the first term initializes Lemma 4 as at = σ2
t +σ

2
t−1+Σ2

t (i.e., amax = O(σ2
max+Σ2

max)) and
b = 1/(σ2

max+Σ2
max), the second term initializes Lemma 4 as at = DFt

(x⋆,xt)+DFt−1
(x⋆,xt−1)

(i.e., amax = 4GD due to Assumption 1) and b = λi⋆ , the third term initializes Lemma 4 as
at = λ2i⋆∥xt,i⋆ − xt∥2 + λ2i⋆∥xt−1,i⋆ − xt−1∥2 (i.e., amax = 2D2 due to λi ≤ 1 and Assumption 1)
and b = λi⋆ . The O(1) term contains ignorable terms like O(1/λ). The second step requires
C13, C14 ≥ 1 by Lemma 5.

Regret Analysis. For convex functions, by combining the meta and base regret, it holds that

REGT ≤ O
(√

σ2
1:T +Σ2

1:T

)
+O(C10 + C11) +

(
C0

2C10
+

5D

2C11
− 1

) T∑
t=1

DFt
(x⋆,xt)

≤ O
(√

σ2
1:T +Σ2

1:T

)
,

by choosing C10 = C0 and C11 = 5D.

For exp-concave functions, by combining the meta and base regret, it holds that

REGT ≤ O
(
d

α
ln
(
σ2
1:T +Σ2

1:T

))
+O(C3 + lnC12) +

(
120L

C12
− 1

2

) T∑
t=1

DFt
(x⋆,xt)

+

(
C0

2C3
+

4G2

C12
− αi⋆

4

) T∑
t=1

⟨gt,xt − xt,i⋆⟩2 ≤ O
(
d

α
ln
(
σ2
1:T +Σ2

1:T

))
,

by choosing C12 = max{1, 240L, 32G
2

αi⋆
} and C3 = 4C0

αi⋆
. Note that such a parameter configuration

will only add an O(1/α) factor to the final regret bound, which can be absorbed.

For strongly convex functions, by combining the meta and base regret, it holds that

REGT ≤ O
(
1

λ

(
σ2
max +Σ2

max

)
ln

σ2
1:T +Σ2

1:T

σ2
max +Σ2

max

)
+O(C4 + lnC13 + lnC14)

+

(
C0D

2

2C4
+

16D2

C14
− λi⋆

4

) T∑
t=1

∥xt − xt,i⋆∥2 +
(
960LGD

C13
− 1

2

) T∑
t=1

DFt(x
⋆,xt)

≤ O
(
1

λ

(
σ2
max +Σ2

max

)
ln

σ2
1:T +Σ2

1:T

σ2
max +Σ2

max

)
,

by choosing C13 = max{1, 1920LGD}, C14 = max{1, 128D
2

λi⋆
} and C4 = 4C0D

2

λi⋆
. Note that such a

parameter configuration will only add an O(1/λ) factor to the final bound, which can be absorbed.

Note that the constants C3, C4, C10, C11, C12, C13, C14 only exist in analysis and thus can be chosen
arbitrarily, finishing the proof.

E Technical Lemmas

Lemma 5. For any a > 1, b > 0, it holds that ln(a+ b) ≤ ln(Ca) + b
C for some C ≥ 1.
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Proof. The one-line proof is presented below:

ln(a+ b) ≤ ln(Ca+ b) ≤ ln(Ca) + ln

(
1 +

b

Ca

)
≤ ln(Ca) +

b

C
,

where the first step is due to C ≥ 1, and the last step adopts ln(1 + x) ≤ x for any x ≥ 0.

Lemma 6 (Corollary 5 of Orabona et al. [2012]). If a, b, c, d, x > 0 satisfy x − d ≤ a ln(bx + c),
then it holds that

x− d ≤ a ln

(
2ab ln

2ab

e
+ 2bd+ 2c

)
.
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